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ARTICLE INFO ABSTRACT

Keywords: Humans report imagining sound where no physical sound is present: we replay conversations,
Pupillometry practice speeches, and “hear” music all within the confines of our minds. Research has identified
Pupil dilation neural substrates underlying auditory imagery; yet deciphering its explicit contents has been

Mental imagery

elusive. Here we present a novel pupillometric method for decoding what individuals hear “in-
Auditory imagination

side their heads”. Independent of light, pupils dilate and constrict in response to noradrenergic

Music .. . . . . . .

Norepinephrine activity. Hence, stimuli evoking unique and reliable patterns of attention and arousal even when
LC-NE system imagined should concurrently produce identifiable patterns of pupil-size dynamics (PSDs).
Attention Participants listened to and then silently imagined music while eye-tracked. Using machine

learning algorithms, we decoded the imagined songs within- and across-participants following
classifier-training on PSDs collected during both imagination and perception. Echoing findings in
vision, cross-domain decoding accuracy increased with imagery strength. These data suggest that
light-independent PSDs are a neural signature sensitive enough to decode imagination.

1. Introduction

At any given moment, we exist in two worlds: a shared external world that exists outside our bodies, and the private internal
world we create within our minds. Inside these private worlds, we relive past memories, process present experience, and plan future
actions — rendering “mind-reading” an essential skill for a social species. Indeed, humans have evolved to be experts at inferring
covert cognitions from subtle signals. We glean attention from gaze (Frischen, Bayliss, & Tipper, 2007), and read emotions from facial
expressions (Ekman, 1987) and vocal prosody (Scherer, Johnstone, & Klasmeyer, 2003). Anecdotally, we also “catch” when those
around us traverse between worlds, redirecting attention from their external to internal environments (“mind wandering”). Yet only
recently have we begun decoding the explicit contents of covert mental experience.

Research conducted over the past 50 years shows that physiological, neural, and reaction time data can be used to draw inferences
about the objects and operations we imagine. For instance, effortful calculations result in pupil dilation (Hess & Polt, 1964), neural
activity reveals whether we are imagining sight or sound (Cichy, Heinzle, & Haynes, 2011; Kraemer, Macrae, Green, & Kelley, 2005),
and reaction-time increases proportionally to the degree we mentally rotate an object (Cooper & Shepard, 1973). Advances in
neuroimaging have further expanded this ability to understand covert cognitions and operations. Capitalizing on unique information
encoded in higher-level patterns of brain activity, researchers have demonstrated rudimentary reconstruction of imagined visual
categories (Reddy, Naotsugu, & Serre, 2010), images (Koenig-Robert & Pearson, 2019), and dreams (Horikawa, Tamaki, Miyawaki, &
Kamitani, 2013). While much of mental imagery research has centered on the visual domain (leaving open questions of general-
izability to other kinds of “sensory thought”, Pearson, 2019), intracranial recordings have provided some evidence for the decoding of
imagined auditory features, e.g. spectrotemporal features of speech (Martin et al., 2014). Here we report a novel and non-invasive
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method for decoding high-level auditory mental imagery.

Across two experiments, we investigate whether patterns of pupil-size dynamics (PSDs) can sensitively encode the music we hear
“inside our heads”. We first test the robustness of this signal (i.e., how well it is conserved) within and across individuals. We
additionally assess how well this signal is conserved across perception and imagination domains, following findings in the vision
literature that mental imagery can function like a weak form of perception (Pearson, Naselaris, Holmes, & Kosslyn, 2015). We
hypothesize that pupillometric decoding of imagination should be possible in all these conditions due to known relationships between
pupil size and the locus coeruleus-norepinephrine system.

1.1. Pupil size and the locus coeruleus-norepinephrine system

In response to stress and salience, the locus coeruleus (LC) modulates attention and arousal via the release of norepinephrine (NE)
to the forebrain (Berridge & Waterhouse, 2003). While the exact path of innervation remains unknown, studies conducted in humans
and animals show evidence of a tight and reliable relationship between NE release and pupil dilation (e.g., Joshi, Li, Kalwani, & Gold,
2016; Sterpenich et al., 2006), such that under constant-light conditions, changes in pupil size are likely mediated near-exclusively by
LC-NE activity (Koss, 1986). This association is true across modalities (e.g. touch — Chapman, Oka, Bradshaw, Jacobson, & Donaldson,
2003; smell - Schneider et al., 2009; sound — Partala & Surakka, 2003; sight — Hess & Polt, 1960), and this association is precise; Joshi
and colleagues found that light-independent pupil dilations index NE activation on a “spatiotemporal scale” (i.e., amplitude and
timing) as fine as single spikes from single-unit recordings (2016). These data suggest that light-independent PSDs reflect moment-to-
moment changes in attention and arousal. While mental imagery and attention are dissociable processes (Thompson, Hsaio, &
Kosslyn, 2011), attention is necessary to consciously generate internal representations; and if the generated percept is dynamic —
unfolding in meaning over time — mental effort and physiological arousal are also likely to vary. Hence, we hypothesize that given the
tight link between pupil dilation and noradrenergic firing by the LC, stimuli that evoke unique and reliable fluctuations in attention
and arousal even when imagined will produce unique pupillary signatures capable of identifying that imagined stimulus.

Eye-tracking research has seen initial strides towards the idea of ‘mind-reading’: Stoll et al. leveraged known relationships be-
tween pupil size and mental effort to decipher binary “Yes/No” (nonverbal) answers from patients with locked-in syndrome (2013);
the timing of maximum pupil size over a trial has been shown to identify the time at which a decision is reached (Einhduser, Koch, &
Carter, 2010); and Laeng and Sulutvedt found that the pupil adjusts to imagined brightness (Laeng & Sulutvedt, 2014), and with
Mannix: imagined size and distance (Sulutvedt, Mannix, & Laeng, 2018), demonstrating physiological response to imagined percepts.
We build on this literature to investigate what global patterns of pupillary responding can reveal about the high-level contents of
auditory imagery. Across two experiments, we continuously measured PSDs of participants as they physically listened to and then
silently imagined musical excerpts. We used these data to train machine learning algorithms and test their ability to correctly identify
these songs when later imagined.

2. General methods and materials
2.1. Participants

The reported studies were approved by the Committee on the Use of Human Subjects at Harvard University. Participants were
recruited through Harvard University’s Study Pool website, and compensated for their participation with course credit. Written
informed consent was obtained following description of the task. All participants had normal or corrected-to-normal vision and
hearing. Participants under 18 years of age provided parental consent for their participation.

2.2. Eye-tracking and quality control

Eye-tracking was conducted using the SMI Red-n eye-tracker, a system with a large “head box” (i.e., tracking range) that allows
participants to behave naturally during music listening (e.g., nodding their heads in time to a beat). Participants were seated ap-
proximately 30 in. from the eye-tracker. Participants were calibrated prior to the task and asked to keep their gaze somewhere on the
computer screen for the duration of the experiment. Pupil diameter was recorded from the left eye at 30 Hz. Missing values due to
excessive movement or eye-blinks were linearly interpolated. Trials requiring over 25% of data to be interpolated were discarded (see
Kang & Wheatley, 2015). The resulting data was order 5 median-filtered and low-pass filtered (cutoff frequency 10 Hz) to remove
spikes from the data, averaged into 100 ms bins, and detrended to correct for slow drift (see Smallwood et al., 2011; Wierda, van Rijn,
Taatgen, & Martens, 2012).

2.3. Rationale for using music stimuli

We test the hypothesis that PSD patterns identifiably encode online mental experience. We chose musical stimuli for three
reasons: first, we believe that inherent properties of rhythm and meter render music an easy stimulus to imagine vividly and on a
reasonably stable time-scale within and across individuals. Second, music remains mentally and physiologically engaging over re-
peated representations (Laeng, Eidet, Sulutvedt, & Panksepp, 2016; Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011), pre-
senting lower risk of mind-wandering. Finally, the pervasive role of music in everyday life allows reasonable likelihood that stimuli
will be familiar and possible to mentally recreate by a broad population.
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It is important to note that the LC-NE system responds to stress and salience regardless of source. Music contains many such
sources: low-level features such as volume, pitch, or timbre, higher-level features such as attention-grabbing lyrics, and combinations
of the two that may contribute to e.g. musical/emotional tension and resolution. In these experiments, we do not claim to know
which features drive noradrenergic release (indeed, this is likely to vary across individuals); we test only whether the resultant
pattern of NE release is uniquely associated with specific pieces of music and subsequently identifiable using machine learning
methods.

2.4. Data analysis

Binary support vector machine (SVM) and dynamic time warping (DTW) classification algorithms were used to test whether PSDs
uniquely and reliably encoded the contents of silent imagination. Classification data were then analyzed using intercept-only logistic
regressions with random intercepts for participants, imagined song, and classifier (as determined by the model). Thus, all classifi-
cation accuracies reported take participant-level and stimulus-level dependencies into account.

2.4.1. Between-participants classification

To investigate whether PSD patterns uniquely encode imagined songs across participants, we used binary SVM classifiers to
conduct leave-one-out cross-validation in R using the caret package (Kuhn, 2017). For example, given the song-pair Build Me Up
Buttercup (The Foundations) and Chandelier (Sia), a classifier was trained on the PSD patterns collected from all but one of the
participants as they imagined both songs. After this learning, the classifier was given the remaining participant’s imagination trial to
decode. This was done for every possible song-pair for each participant.

2.4.2. Within-participants classification

We used DTW, a standard algorithm for detecting pattern similarities in signals that may be offset in time (Berndt & Clifford,
1992; Mueen & Keogh, 2016) for the within-participants analyses in Experiments 1 and 2. The DTW function uses a dynamic
programming approach to time series via the stretching and compressing of the time axis within specified time windows. This
temporal flexibility compensates for small deviations in timing that may occur e.g., when imagining music in silence. We specified 3-
second windows to ensure that the window contained a local but meaningful portion of the signal (see Kang & Wheatley, 2015,
2017). DTW calculates the effort needed to align two signals and outputs this calculation as a “cost value”, such that the higher this
value, the more dissimilar the signals being compared.

In the current studies, DTW was used to compute pattern similarity of PSD patterns during the listening and imagination of songs.
For each participant, DTW computed the cost value for signals collected as participants listened to and imagined the same song, and
compared this value to the cost values of aligning that same imagination trial to every other listening trial. For instance, if parti-
cipants imagined Song 1, DTW would align this pupillary signal to the signal collected as participants listened to Songs 1, 2, 3, and 4.
The cost of these alignments would then be compared in a binary fashion (e.g., 1,1 vs. 1,2; 1,1 vs. 1,3, etc.) to classify the imagined
song.

3. Experiment 1: Decoding 10 s of musical imagery
3.1. Methods

3.1.1. Participants.

50 participants signed up for Experiment 1 during the recruiting window. 1 participant did not complete the experiment, 1
participant’s data was lost due to technical error, and an additional 2 participants’ data did not meet quality-control thresholds due to
excessive movement and/or blinking (2.2). Data from 46 participants were analyzed.

3.1.2. Musical stimuli

Experiment 1 presented 40-second excerpts from 4 popular songs: Build Me Up Buttercup (The Foundations), Chandelier (Sia), I
Want To Hold Your Hand (The Beatles), and Wannabe (The Spice Girls). All songs contained vocals and instrumentals, and were rated
as being “highly familiar” by a group of 36 independent raters (M = 4.39 on a 5-point familiarity scale, where “1” corresponded to
“highly unfamiliar” and “5” corresponded to “highly familiar”).

3.1.3. Procedure

Following calibration, participants were presented with four musical excerpts, presented on over-ear headphones. Participants
listened to each excerpt in its entirety (“Listening” trials), and then to that same excerpt with 10 s removed at some point within the
song (“Imagination” trials). During listening trials, participants were asked to listen carefully to the excerpt “as though you’re trying
to memorize it”, and to redirect their attention back to the music should they notice their minds wandering. After the first listening
trial for each song, participants indicated how well they knew the song on a 5-point familiarity scale (3.1.2). During imagination
trials, participants’ goal during the 10-second periods of silence was to “fill in the music as vividly and accurately possible” silently in
their minds, with the goal of perfectly matching the music when it recommenced (see Fig. 1). This was done twice for each song.
Songs were presented in random order.

Throughout the experiment, participants were asked to keep their gaze somewhere on the computer screen. To keep luminance
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Fig. 1. Pupil dilation patterns during physical listening and silent imagining of musical excerpts. Examples of pupillometric time-series data
from eight participants (1 per panel) as they physically listened to and silently imagined the musical excerpts presented in Experiment 1 (a-d) in
constant-light conditions. For each song, we show sample trials from two participants: one whose imagination trial was correctly classified across
domain (left) and one whose imagination trial was incorrectly classified. All panels display z-scored pupillometric time-series collected during
10 seconds of either music or silence occurring within a 40-second trial. As pupil-size amplitude at each moment reports noradrenergic release in
response to stress and salience, pupillary time-courses yield a signature of participants’ subjective experience of attention and physiological arousal
on a trial-by-trial basis.

constant, screens displayed a solid black background. Prior to each trial, the word “LISTEN” or “IMAGINE” appeared onscreen to alert
participants to the upcoming task.

3.2. Results

3.2.1. Classifier decoding of novel imagination trials following training on imagination PSDs (within-domain classification)

Pupil dilation time-series data collected over these 10 s of imagination were used to train leave-one-out binary SVM classifiers
(2.4.1). For each participant, classifiers were trained on all other participants’ imagination data, and then given the participant’s own
imagination trial to decode. Classifiers correctly decoded the imagined song 74.1% of the time, taking into account participant-level
dependencies (chance = 50%; OR = 3.1,p < 0.0001, 95% CI [71.4%, 79.7%]). These results suggest that dynamic stimuli — even
when silently imagined — can elicit unique patterns of NE release that are conserved across individuals. This performance cannot be
explained solely by low-level features of the pupillary signal; a secondary set of classifiers trained only on the minimum, maximum,
and average amplitude of pupils and their standard deviations were unable to identify the imagined songs better than chance
( = 0.5).

We additionally tested whether participants’ own PSDs collected during music imagination could predict the songs they later
imagined. As participants did not provide enough individual data to reasonably train SVM classifiers, we used a pattern recognition
algorithm (DTW) to classify participants’ imagination trials (2.4.2). When computing pattern similarity between pairs of signals (each
collected over a single imagination trial), DTW identified the correct song 64% of the time; taking into account participant-, song-,
and classifier-level dependencies, the likelihood of correct decoding significantly exceeds chance accuracy (OR = 1.91, p = 0.003,
95% CI [54.0% 75.7%], chance = 50%). These accuracies fall into similar ranges seen in studies decoding visual imagery (Harrison &
Tong, 2009; Koenig-Robert & Pearson, 2019; Reddy, Tsuchiya, & Serre, 2010).

3.2.2. Classifier decoding of novel imagination trials following training on listening PSDs (cross-domain classification)

We also conducted decoding across domains to interrogate similarities in noradrenergic response to externally-perceived versus
internally-generated music. Findings in the vision literature suggest that mental processes associated with the perception of a sti-
mulus overlap with but differ from mental processes associated with imagining that stimulus (Amedi, Malach, & Pascual-Leone, 2005;
Naselaris, Olman, Stansbury, Ugurbil, & Gallant, 2015; see Pearson et al., 2015 for a review), and that this overlap may be influenced
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Fig. 2. Classification of imagined music given pupillometric training data collected during imagination (within-domain classification)
and music-listening (cross-domain classification). Machine learning algorithms tasked with decoding the song participants imagined from eye-
pupil data alone significantly exceeded chance accuracy following training on others’ Imagination trials (Panel A: between subjects: 74.1%; within
subject: 64%, all p’s < 0.005). Classifier performance was reduced when subjected to cross-domain classification (i.e., decoding Imagination trials
following training on Listening trials, Panel B): performance exceeded chance accuracy between subjects (58.6%, p < 0.02) using SVM classifiers,
but not within-subjects (56.2%, p = 0.071) using DTW algorithms. Strategies for boosting cross-domain classification are investigated in Study 2.

by idiosyncratic differences in the vividness of the imagined percept (Koenig-Robert & Pearson, 2019). To test this in the auditory
domain, we additionally tasked classifiers with decoding imagination trials following training on listening trials. Taking into account
participant- and song-level dependencies, the optimal model performed significantly better than chance (OR = 1.4,p < 0.02, 95%
CI [50.2%, 67.3%], chance = 50%) when decoding across perception and imagination domains, with expected decreases in overall
accuracy (58.6% versus 71.4%). This was exacerbated further at the individual subject level when DTW algorithms were tasked with
decoding each participant’s imagination trials given their single-trial listening data. The imagined song was correctly identified
56.2% of the time; however, performance failed to reach significance (p = 0.071; see Fig. 2).

3.3. Discussion

Taken together, data from Study 1 suggest the following conclusions: (1) patterns of pupil dilation and constriction are conserved
within and across individuals as they imagine the same piece of music; when a secondary set of classifiers was trained only low-level
features of the pupillary signal (minimum, maximum, average amplitude and their standard deviations), they were unable to decode
the imagined songs better than chance. This suggests that classifiers are decoding higher-level attention and arousal dynamics evoked
by musical imagery (either in part e.g., by rhythm, volume, or by overall gestalt). (2) PSD patterns are more weakly conserved across
perception and imagination domains: classifiers trained on “Listening” trials were able to decode “Imagination” trials across parti-
cipants, but were not able to do so given single-trial data within individual subjects.

One possible reason for this difference in cross-domain decoding accuracy within- and across-participants is the greater amount of
training/reference data available for the between-subjects analysis: leave-one-out classifiers were trained on the PSD patterns of all
other participants (approximately 100 trials), whereas DTW calculated the pattern similarity of signal-pairs collected over single
trials of listening and imagination.

Additionally, PSDs may reflect nuanced and idiosyncratic differences in the processes associated with listening to versus ima-
gining music. Mentally recreating a sensory percept requires more effort and familiarity than the passive experiencing of that same
percept; consequently, mental imagery in vision is often conceptualized as a weak or “noisy” form of perception. As PSD patterns
reflect dynamic changes in attention, arousal, and mental effort, it is reasonable that classifier performance would suffer when
decoding across domains, and that performance would be most affected in the within-subject analysis. Kosslyn theorized that the
fidelity of an imagined percept is dependent on an individual’s idiosyncratic ability to activate stored memories of the percept, and
then to recreate that percept (1988), and research has supported the role of vividness in facilitating neural decoding of visual
imagery (Koenig-Robert & Pearson, 2019). If auditory imagery functions similarly, PSD patterns should be more robust across do-
mains (and decoding accuracy should improve) when familiarity with the imagined stimulus is maximized and the effort needed to
recreate it is reduced. We test these possibilities in Experiment 2.
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4. Experiment 2: Cross-domain decoding of 19 s of auditory imagination

In Experiment 2, we investigated whether PSDs collected as an individual listened to music would reliably identify the song they
then imagined when (a) recollection and internal reconstruction of music is facilitated and (b) classifiers have access to richer referent
data. As in the previous study, participants were eye-tracked as they physically listened to and then silently imagined music.

4.1. Methods

4.1.1. Participants
55 participants signed up for Experiment 2 during the recruiting window. 3 participants’ data failed to pass quality-control
thresholds, and 1 participant’s data was lost due to technical error. Data from 51 participants were analyzed.

4.1.2. Facilitating memory activation and recreation of musical excerpts

Participants’ familiarity ratings for the musical excerpts used in Experiment 1 indicated only middling experience with the
musical stimuli (M = 2.99 on a 5-point scale where “1” corresponded to “highly unfamiliar” and “5” corresponded to “highly
familiar”). These ratings diverged from pre-ratings given by independent raters (M = 4.39 on the same scale). This lack of familiarity
may have affected participants’ ability to remember and mentally recreate music with high fidelity, distorting the associated PSD
pattern. Additionally, idiosyncratic differences in participants’ ability to keep mental time (i.e., to maintain a steady beat in sustained
periods of silence) may have affected the temporal dimension of their pupillary signatures, stretching and compressing different
points of the signal.

To increase participants’ memory for the music, we presented participants with short excerpts from three well-known songs (the
first verses of John Newton’s Amazing Grace (19 s) and Somewhere Over the Rainbow from “The Wizard of Oz” (22 s), as well as the first
22 s of The Imperial March (Darth Vader’s Theme) from “Star Wars”) and asked them to choose the one song they knew best to
subsequently imagine. We hypothesized that this would reduce mental effort associated with retrieving stored memories of the music
later on.

In addition to their ubiquity, these three songs were selected for their comparable speeds. All three clips were tempo-matched at
85 bpm and overlaid with a steady metronome beat. We hypothesized that providing this beat during both music listening and
imagination would reduce idiosyncrasies in participants’ ability to keep steady time (minimizing mental effort associated with mental
recreation), and time-lock PSD signatures across perception and imagination domains. The addition of the metronome is an extra-
musical feature with the potential to influence the PSD response. However, because the same unchanging beat is present in all
“Listening” and “Imagination” trials, any effect of beat alone would be applied across all songs, making accurate classification less
likely.

4.1.3. Granting DTW algorithms access to more information for classification

In our between-subjects analyses, classifiers were given pupillometric time-series data from all other participants during the
training period (approximately 100 training trials per song). Given the tight association between pupil size and attention (1.1) and
the difficulty of asking participants to listen to the same song without mind-wandering enough times to train a classifier, we instead
asked participants in Study 2 to listen to and imagine longer musical excerpts. Rather than the 10-second imagination trials classifiers
were given in Experiment 1, data collected over 19 s of imagination (i.e. the maximum duration shared across all three songs) were
analyzed in Experiment 2. This provided DTW algorithms with more differentiated and information-rich time-series data for clas-
sification.

4.1.4. Procedure

As in Experiment 1 (3.1.3), participants were eye-tracked as they physically listened to and then silently imagined music. During
the listening portion of the task, participants were asked to listen to each song carefully, and to redirect their attention to the music as
necessary. During the imagination portion of the task, participants heard a metronome track beating at 85 bpm. They were told to
wait 4 beats to establish tempo, and then begin imagining their chosen song as vividly and accurately as they could starting on the
fifth beat (Fig. 3). Music was presented on over-ear headphones, and participants were instructed to keep their gaze on the computer
screen for the duration of the task. To maintain constant luminance, a solid black screen was presented during listening and ima-
gination trials.

4.2. Results

4.2.1. Within-subject classification across domains

Following procedures outlined by Kang and Wheatley (2017), DTW algorithms calculated the degree to which PSD patterns were
conserved during the listening and imagination of songs (2.4.2). Given participants’ imagination trials, DTW algorithms calculated
pattern similarity for every possible pair of time-series. The song participants chose to imagine was correctly identified 75.5% of the
time (OR = 5.12, p = 0.004, 95% CI [69.6%, 99.1%], chance = 50%) when given access to the full common dataset (19 s) and
62.8% of the time when given only the first 10s of dilation data during listening and imagination (OR = 1.77, p = 0.025, 95% CI
[52.6% 76.5%], chance = 50%), taking participant-level dependencies into account (Fig. 4).

Each of the three musical excerpts were chosen with roughly equivalent frequency, and all participants reported being very
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Fig. 3. Pupil dilation dynamics of two participants during listening and imagining of the same (a) and different (b, c) songs. Pupil dilation
patterns of two participants as they imagined 19 s of their chosen song (Top Row: The Imperial March (Darth Vader’s Theme) from “Star Wars”;
Bottom Row: Somewhere Over the Rainbow from “The Wizard of Oz”) were compared to dilation patterns collected as they listened to the same song
(a) or different songs (b, ). The top panel illustrates a trial where the participant's imagined song was correctly decoded; the bottom panel illustrates
a trial where the participant's imagined song was incorrectly decoded.

familiar with the song they imagined (M = 4.25 on the 5-point familiarity scale previously described).

4.3. Discussion

These data demonstrate pupillometric decoding of musical imagery within an individual across perception and imagination
domains. The data additionally suggest that auditory mental imagery functions like a “noisy” form of perception, with idiosyncratic
differences in imagery strength influencing the degree of overlap in mental processes associated with sensory perception and internal
generation. Decoding performance further increased when algorithms were given access to more reference data. Decoding accuracies
of PSD patterns are comparable to those seen in neural decoding research in the visual domain (e.g. Harrison & Tong, 2009; Koenig-
Robert & Pearson, 2019; Reddy, Tsuchiya, et al., 2010).

5. Conclusions

Over the past 60 years, scientists have primarily used discrete changes in pupil size to broadly infer individuals’ state of attention,
arousal, and mental effort. Recently, psychological investigations have extended their consideration to the pupillometric time-series,
demonstrating the ability of higher-level patterns of pupil constriction and dilation to reveal when and why these mental states shift.
In the current work, we build on this knowledge to show that PSD patterns not only encode online changes in physiological ex-
perience, but that this signal can be sensitive and robust enough to identify high-level contents of mental experience.

Across two experiments, machine learning methods decoded imagined songs from the dynamic pupillary response with accuracy
significantly better than chance in a variety of contexts: across individuals using classifiers trained on group-level data, within an
individual given single-trial data, and — under conditions where the degree of cognitive demand is sufficiently similar- across do-
mains of perception and imagination. This decoding was not possible when classifiers were trained only on low-level and discrete
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Fig. 4. Classification of imagined music given pupillometric training data collected during physical listening (cross-domain classification)
of personally-familiar music. Participants listened to three tempo-matched musical excerpts accompanied by a metronome beat and chose the
song they knew best to vividly imagine given only that metronome beat. Machine learning algorithms were tasked with decoding which of the three
songs participants imagined from pupil-size time-series alone. The unique morphology of the pupillary response was conserved across perception
and imagination such that DTW algorithms, given every possible song pair, identified the imagined song correctly 62.8% of the time when given 10-
second time-series to decode (chance = 50%, OR = 1.77,p = 0.025, 95% CI [52.6% 76.5%]), and 75.5% of the time given 19-second time-series to
decode (OR = 5.12, p = 0.004, 95% CI [69.6%, 99.1%]).

pupillary features. Taken together, these data show that the information encoded within pupillometric time-series data is rich,
sensitive, and robust enough to allow classification. The current work focused on imagined audition, however LC-NE-mediated pupil
size changes are modality-free. Paired with the myriad practical advantages of eye-tracking as a method for capturing neural activity
(e.g. accessibility, mobility, ecological validity), these findings suggest broad potential for pupillometric methods to expand in-
vestigation and understanding of dynamic mental processes. To decode the contents of mental life is becoming increasingly possible.
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