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The landscape of gender in education and the workforce has shifted over the past decades: women have made gains in representation,
equitable pay, and recognition through awards, grants, and publications. Despite overall change, differences persist in the fields of
science, technology, engineering, and mathematics (STEM). This Viewpoints article on gender disparities in STEM offers an overarching
perspective by addressing what the issues are, why the issues may emerge, and how the issues may be solved. In Part 1, recent data on gaps
in representation, compensation, and recognition (awards, grants, publications) are reviewed, highlighting differences across subfields
(e.g., computer science vs biology) and across career trajectories (e.g., bachelor’s degrees vs senior faculty). In Part 2, evidence on leading
explanations for these gaps, including explanations centered on abilities, preferences, and explicit and implicit bias, is presented.
Particular attention is paid to implicit bias: mental processes that exist largely outside of conscious awareness and control in both male
and female perceivers and female targets themselves. Given its prevalence and persistence, implicit bias warrants a central focus for
research and application. Finally, in Part 3, the current knowledge is presented on interventions to change individuals’ beliefs and
behaviors, as well as organizational culture and practices. The moral issues surrounding equal access aside, understanding and address-
ing the complex issues surrounding gender in STEM are important because of the possible benefits to STEM and society that will be
realized only when full participation of all capable and qualified individuals is guaranteed.
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Introduction
For centuries, the essence of what constitutes the human “fe-
male” and “male” has been portrayed through a lens of differ-
ence, even opposition (e.g., Gray, 1992). In theological,
philosophical, literary, and scientific thought as well as in folk
beliefs, “female” is represented as mentally lesser, weak, and re-
lying on emotion, whereas “male” is represented as mentally su-
perior, strong, and relying on rationality (Keller, 1985). As a
consequence, women’s lack of success, leadership, and represen-
tation in fields that emphasize rationality, especially fields of sci-
ence, technology, engineering, and mathematics (STEM), used to
be seen simply as a consequence of men and women’s divergent
nature and capacities (Keller, 1985).

Over the past 50 years, many of these beliefs are now anti-
quated (Saad, 2017; General Social Survey, 2019), having been
challenged by women’s advances into academe and the work-
force, especially in the arts and humanities, but also in STEM.
Today, U.S. women earn 57% of bachelor’s degrees overall and

50% of bachelor’s degrees in STEM (National Science Founda-
tion, 2018). Gender parity is now within reach in the U.S. work-
force (World Bank, 2018), and there remains no STEM field
without representation of women, even in high-status positions
(National Science Foundation, 2018). As such, the issue of “gen-
der in STEM” is no longer about whether women have the capac-
ity to succeed but rather the costs to STEM that will occur without
the full participation of all qualified and capable candidates, in-
cluding women. Regardless of one’s personal feelings about up-
lifting women, the reality is that a diverse workforce and academe
can provide both financial (Dezsö and Ross, 2012; e.g., Credit
Suisse, 2012) and intellectual benefits (Loyd et al., 2013; see, e.g.,
Galinsky et al., 2015). Thus, gender diversity is necessary to meet
the demands of innovation and productivity in complex STEM
environments (Page, 2011, 2018).

To understand how such demands of innovation and produc-
tivity can be fulfilled, behavioral scientists study the barriers to
access and opportunity, especially those arising from explicit and
implicit attitudes and stereotypes held by both men and women.
To this end, the current Viewpoints article evaluates recent evi-
dence on the extent, causes, and solutions to gender disparities in
STEM, with a particular focus on the role of implicit cognition,
mental processes that reflect “traces of past experience . . . un-
available to self-report or introspection” and are therefore less
conscious and controllable than their explicit counterparts mea-
sured through self-report (Greenwald and Banaji, 1995, p. 4).

In Part 1, the magnitude of gender gaps in STEM representa-
tion, compensation, authorship, grant success, and awards is pre-
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sented, as well as how these gaps have changed over time. In Part
2, leading hypotheses about the causes of such gender gaps are
evaluated: specifically, that women lag behind in STEM because
of (1) innate and/or socially determined gender differences in
abilities necessary for success, (2) innate and/or socially deter-
mined gender differences in preferences, lifestyle choices, or val-
ues among women and men, and (3) explicit and implicit bias in
both women and men as they evaluate the work of women and
men in STEM. Finally, in Part 3, interventions to reduce gender
disparities in STEM by targeting both individual minds and or-
ganizational culture and practices are reviewed.

Part 1: The extent of gender disparities in science
Representation
The gender gap in STEM representation starts early. By middle
school, more than twice as many boys than girls intend to work in
science or engineering-related jobs (Legewie and DiPrete, 2012).
These differences continue through high school courses, partic-
ularly in computer science, engineering, and related subfields
(Cunningham and Hoyer, 2015). For instance, although female
U.S. high school students constitute 61% of AP biology, 52% of
AP statistics, and 50% of AP chemistry students, they represent
only 23% of AP computer science and 29% of AP physics stu-
dents (National Science Foundation, 2018). In college, these dis-
parities increase: 5 times more men than women report an
intention to major in engineering and computer sciences (Fig. 1)
(Radford et al., 2018).

While previous research stressed the issue of a “leaky pipeline”
between college and graduate school (with women being partic-

ularly likely to opt out, or be pushed out, at this educational
transition), new data suggest that, in the United States, the college-
to-graduate school transition no longer leaks more women than
men (Miller and Wai, 2015). As such, attention must be redirected to
earlier transitions, including middle school-to-high school (Legewie
and DiPrete, 2012), and high school-to-college (Shaw and Stanton,
2012), which are important both because they serve as gatekeepers
for later STEM transitions, and also because “leaks” are still apparent
at these junctions.

Even after persisting through early STEM education, women
remain underrepresented throughout higher education in the
United States, again particularly in computer science and engi-
neering (Table 1; Fig. 2). While women now account for 57% of
bachelor’s degrees across fields and 50% of bachelor’s degrees in
science and engineering broadly (including social and behavioral
sciences), they account for only 38% of bachelor’s degrees in
traditional STEM fields (i.e., engineering, mathematics, com-
puter science, and physical sciences; Table 1). Moreover, over the
past 15 years, the percentage of female associate’s or bachelor’s
degree holders has remained stagnant in many STEM subfields
(Fig. 2).

Strikingly, the representation of women has even decreased in
computer science, with female associate’s degrees dropping from
42% in 2000 to 21% in 2015, and the percentage of female bach-
elor’s degrees dropping from 28% in 2000 to 18% in 2015 (Na-
tional Science Foundation, 2018). Although explanations are
elaborated in Part 2, the unique decreasing representation of
women in computer science warrants consideration here. It is

Figure 1. Gender gap in intent to major in STEM and non-STEM fields among U.S. college entrants: a, female; b, male. Data from National Center for Education Statistics High School Longitudinal
Study (Radford et al., 2018, their Table 10). For compiled raw data and code, see https://osf.io/n9jca/.

Table 1. Representation of females across postsecondary education in STEMa

S&E fields (all) S&E fields (without SBS) Non-S&E fields (all) Engineering Computer Science Mathematics Physical Sciences Biology

College (Associates) 44% 27% 63% 14% 21% 29% 42% 67%
College (BA) 50% 38% 61% 20% 18% 43% 39% 60%
Graduate school (MA) 45% 34% 64% 25% 30% 41% 35% 58%
Graduate school (PhD) 45% 41% 59% 23% 23% 28% 33% 53%
aData retrieved from the National Science Foundation (2018), using the most recent available data from 2015. Within the National Science Foundation report, data on associate’s degrees are from appendix Table 2–18, data on bachelor’s
degrees from appendix Table 2–21, data on master’s degrees from appendix Table 2–27, and data on doctoral degrees from appendix Table 2–29. As per the National Science Foundation, science and engineering �S&E fields (all)�also include
social and behavioral sciences (SBS), in addition to the traditional STEM fields of computer science, mathematics and statistics, physical sciences, and engineering. The traditional STEM fields alone (excluding the SBS fields) are referred to
as S&E fields (without SBS) in the table. For compiled raw data and code, see https://osf.io/n9jca/.
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possible that increasing participation
in precollege computer science training
(College Board, 2018), coupled with the
lack of early female role models or teach-
ers in computer science, may increasingly
lead young girls to preemptively opt out of
college computer science because they
have already internalized the stereotype
that they do not belong (e.g., Master et al.,
2016). Explaining the case of computer
science representation remains a neces-
sary direction for future research.

Finally, it is worth noting that under-
representation in doctorate-level STEM
education is greatest at the top 10% of in-
stitutions (Weeden et al., 2017). This sug-
gests that factors, including self-selection
and/or status-based biases, may continue
to limit women’s success throughout
higher education (see Part 2).

As women progress into the academic
and nonacademic workforce, they con-
tinue to be represented in lower numbers
than men. In traditional STEM fields, de-
spite earning 34% and 41% of MAs and
PhDs, respectively, women compose only
25% of the STEM workforce and 27% of
full-time, tenured professors (Hill et al.,
2010; Corbett and Hill, 2015; National
Science Foundation, 2018) (Table 2). Ad-
ditionally, although gains have been made
in faculty representation since the 1970s,
the increases for senior faculty are often
slower than increases for junior faculty
and postdoctorates (National Science
Foundation, 2018). In the case of com-
puter science, for example, the percentage
of female senior faculty has been relatively
slow over the past 15 years, decreasing
only 5 percentage points from 24% in
1999 to 19% in 2015, slower than the
change in the percentage of junior faculty
(which increased by 8 percentage points).

Importantly, this apparent stagnation
in senior positions is partly a consequence
of “demographic inertia,” or that wom-
en’s later entrance in STEM results in
more junior than senior faculty (e.g.,
Hargens and Long, 2002). However,
computer simulations of women’s career
progress show that gender gaps in higher-
status STEM positions are not entirely ex-
plained by inertia and the later entrance of
women in STEM (Shaw and Stanton,
2012). These simulations show that, if the
lack of female senior faculty were attribut-

Figure 2. Proportion of degree earners that are females across postsecondary education (2000 –2015) overall and in STEM
subfields. Proportions of students in each field and degree that identify as female in (a) all science and engineering (S&E) fields,
including social and behavioral science (SBS), (b) traditional S&E fields (excluding social and behavioral sciences), (c) all non-S&E

4

fields, as well as STEM subfields of (d) computer science, (e)
mathematics, (f) engineering, (g) physics, and (h) biology.
Data from National Science Foundation (2018). For compiled
raw data and code, see https://osf.io/n9jca/.
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able entirely to inertia, women would have made faster progress
than what is observed in the real data. As such, additional factors,
such as that the greatest demands of childbearing on women
often coincide with the timing of tenure decisions (Cech and
Blair-Loy, 2019), also appear to contribute to the low numbers of
female senior faculty. This conclusion is crucial because it sug-
gests that we cannot assume time alone will solve the issue of
gender disparities in STEM.

Together, the data on representation provide three conclu-
sions. First, gender gaps in STEM course-taking and interest
emerge as early as middle and high school, with these early tran-
sitions crucial in gatekeeping later participation in STEM. Sec-
ond, gender gaps are most pronounced, and have even increased
over time, for subfields of computer sciences and engineering.
Gaps in these two subfields have a disproportionate impact on the
participation and advancement of women in STEM because they
represent �80% of the STEM workforce (Landivar, 2013) and
offer the highest monetary return on educational investment
(Corbett and Hill, 2015). Third, the gender gap in the academic
workforce is greatest in tenured and high-status faculty positions,
and these gaps cannot be solved by time alone. Differences in
representation provide the most basic data for the issue under
review: they show a consistent lack of women in STEM careers;
and because women are as capable as men to succeed in STEM
(see Part 2), the result is a loss of productivity and innovation to
both STEM and society (Page, 2018).

Compensation
Even when female scientists enter and persist in STEM careers,
their economic compensation is not equal to that of their male
colleagues (Blau and Kahn, 2017; American Association of Uni-
versity Women, 2018; National Science Foundation, 2018). In
raw dollars, women in the U.S. STEM workforce are paid $20,000
less than men, receiving the equivalent of 79% of men’s earnings
(Table 3).

When such statistics are reported, however, they are often
mistakenly assumed to mean that women make 79% of men’s
earning, for the same work. This is not the case. The 79% statistic
is confounded by additional gender differences in: (1) represen-

tation of subfields, with men overrepresented in private for-
profit sectors versus nonprofit sectors, as well as in high-paying
computer science/engineering versus lower-paying biology (see
Representation); (2) seniority, with women’s later entrance in
STEM leading women scientists to be younger, on average, thus
leading to lower compensation as a function of age and experi-
ence (National Science Foundation, 2018); and, finally, (3) the
status of jobs held by men and women, with women more likely
to occupy low-paying part-time positions, often to fulfill caregiv-
ing responsibilities (Cech and Blair-Loy, 2019).

Nevertheless, even after controlling for correlated variables to
compare men and women doing equal work at equal ages and
experience levels, women in STEM are still found to receive 9%
less than men (National Science Foundation, 2018). Similarly,
controlling for confounding variables does little to change the
gender pay gap in male-dominated subfields (e.g., computer sci-
ence and engineering) (Michelmore and Sassler, 2017). This per-
sistent difference is especially notable when compounded over a
career. For example, recent simulations of gender pay gaps in
medical sciences suggest that a pay gap of just 3% can accumulate
into a difference of over $500,000 in additional accumulated
wealth across a scientist’s career (Rao et al., 2018).

Importantly, as with all the data presented in this paper, the
gender pay gap does not affect all women and men equally. In-
tersections with marital and parental status reveal a “motherhood
penalty” for women with children and a “fatherhood bonus” for
men with children (Correll et al., 2007; Benard et al., 2008). For
instance, with each child, mothers’ wages are reduced by �5%,
even after controlling for other factors, such as work hours and
experience. Indeed, experimental audit studies indicate that, for
identical applicants differing only in parental status, mothers
were offered �$11,000 less than women without children (a gap
of 7%) and �$13,000 less than fathers (a gap of 9%) (Correll et
al., 2007). These same studies also indicate that a father is com-
pensated �4% more than an identical male candidate without
children. These pay gaps are, in turn, explained by the perception
that parenthood builds men’s, but reduces women’s, commit-
ment (Correll et al., 2007), as well as the perception that mothers
must trade between warmth and competence, whereas fathers are
perceived as both warm and competent (Cuddy et al., 2004).

Intersections between gender and race are also noteworthy for
pay gaps: for instance, Latina women in STEM earn only 54% of
white men’s earnings (American Association of University
Women, 2018). Although intersectional data remain unfortu-
nately rare, such findings reinforce that future research must col-
lect fine-grained demographic data to better understand how
outcomes (including compensation, representation, and recog-
nition) operate across multiple identities.

Grant success, authorship, and awards
Grant success
Unlike the data on gender differences in representation and com-
pensation, gender gaps in overall grant success rates now appear
small to nonexistent. While early studies of funding patterns sug-
gested that women were less likely to receive grants than men (e.g.,
in Sweden; Wenneras & Wold, 1997), this no longer appears
to be the case among many U.S. funding agencies. Across the
National Science Foundation (NSF), United States Department
of Agriculture, and the National Institutes of Health (NIH), the
percentage of female applicants receiving grants is now approxi-
mately equivalent to the percentage of male applicants receiving
grants (Hosek et al., 2005; Pohlhaus et al., 2011; U.S. Government
Accountability Office, 2015). This progress toward granting par-

Table 2. Representation of females across career stages in STEMa

S&E
fields
(all)

S&E
fields
(without SBS)

Non-S&E
fields (all) Engineering

Computer
Science Mathematics

Physical
Sciences Biology

Postdoctorates 43% 42% 51% 23% 33% 20% 30% 50%
Junior faculty 43% 38% 51% 22% 26% 38% 29% 50%
Senior faculty 31% 27% 39% 14% 19% 21% 20% 39%
Employed

workforce
28% 25% 50% 15% 24% 43% 28% 48%

aData retrieved from the National Science Foundation (2018), using the most recent available data from 2015.
Within the National Science Foundation report, data for academic positions are from appendix Tables 5–15, and
data for employed workforce from appendix Table 3–12. As per the National Science Foundation, S&E fields (all) also
include social and behavioral sciences, in addition to the more traditional STEM fields of computer science, mathe-
matics and statistics, physical sciences, and engineering. The traditional STEM fields alone (excluding the SBS fields)
are referred to as S&E fields (without SBS) in the table. For compiled data and code, see https://osf.io/n9jca/.

Table 3. Gender pay gap in STEM and non-STEM fieldsa

S&E fields
(all)

Non-S&E
fields (all) Engineering

Computer
Science Mathematics

Physical
Sciences Biology

Men 95,000 75,000 95,000 100,000 89,000 83,000 68,000
Women 75,000 50,000 88,000 86,000 77,000 60,000 55,000
Gender

pay gap
20,000 25,000 7000 14,000 12,000 23,000 13,000

aMedian annual salaries (in dollars) of all full-time workers in 2015. Data retrieved from National Science Foundation
(2018, their appendix Table 3–17).
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ity is likely the result of the conscious efforts of governmental
funding agencies to collect the necessary data and conduct formal
reviews of their own evaluation processes and possible biases
(e.g., through the NSF Authorization Act of 2002) (Hosek et al.,
2005). In addition to such observational data showing similar
success rates for men and women, recent experimental studies
also indicate similar granting rates for identical male and female
grant applicants (Forscher et al., 2019).

Nevertheless, subtle disparities linger. First, women are less
likely to reapply (i.e., renew) their grants at NSF and NIH, with a
20% difference in renewal/reapplication rates at NIH and a 5%
difference in renewal/reapplication rates at NSF (Hosek et al.,
2005; see also Pohlhaus et al., 2011). Gender differences in the
likelihood to renew a grant imply possible gender differences in
research persistence (Hechtman et al., 2018), and may therefore
be related to the aforementioned loss of female faculty at the
junior-to-senior faculty transition.

Second, crucial data are lacking from funding bodies that rep-
resent particularly male-dominated subfields with an engineer-
ing or defense focus (e.g., NASA, Department of Defense,
Defense Advanced Research Projects Agency, Department of En-
ergy), where larger gender gaps in grant success rates may emerge
(U.S. Government Accountability Office, 2015). As long as such
agencies fail to collect or report the necessary data, beliefs, such as
“DARPA does not fund women,” will continue to circulate in the
academic folklore. Such beliefs may dissuade applications and, as
a consequence, reduce the likelihood of receiving top quality ap-
plications from both female and male candidates.

Third, women appear less likely to apply for the top 1% of
large grants at NIH (Hosek et al., 2005). This difference in apply-
ing for the largest NIH grants may contribute to the observation
that NIH grants held by women are, on average, smaller in dollar
amounts than the grants held by men (Hosek et al., 2005; Wais-
bren et al., 2008; Oliveira et al., 2019). However, observing overall
differences in dollar amounts need not entail bias on behalf of the
granting agency. Lower overall amounts may be due to either (1)
women requesting less than men and therefore receiving less
(suggesting no bias), or (2) women and men requesting similar
amounts but women receiving less (suggesting bias). NSF reports
data on both the amount requested and received and finds no
gender differences in either the amount requested or received,
suggesting no bias. However, the NIH only reports data on the
amount received, making it impossible to determine the exis-
tence (or absence) of bias because the amount received cannot be
directly compared with the amount actually requested. Collec-
tion and reporting of both requested and received amounts
across applicant genders are foundational to identifying and un-
derstanding possible gender bias in STEM grants.

Finally, recent studies of Canadian Institutes of Health Re-
search revealed that grant reviewers told to focus on evaluating
the “scientist” (rather than the “quality of the science”) were 4
percentage points more likely to fund grants from men over
women (see also Tamblyn et al., 2018; Witteman et al., 2019).
This reinforces that evidence of lingering gender gaps in grant
success rates are unlikely to be due to differences in the quality of
women’s and men’s actual proposed research, but rather to the
reviewer’s biased beliefs about women and men as researchers.

Despite these subtle differences in how male and female sci-
entists consider, and are considered by, granting agencies, the
general trends of parity in grant success are notable when con-
trasted with the disparities in compensation discussed above. As
such, identifying the factors that explain grant parity, including
the possible role of transparency in federal agencies (vs privacy in

salary information), will inform theories about the causes and
solutions to gender disparities in STEM more broadly.

Authorship
Like grant success, gender gaps in authorship of scientific publi-
cations are subtle. Aggregate statistics suggest that many fields
and journals have attained gender parity in the success rates of
female and male authors (Brooks and Della Sala, 2009; Allagnat et
al., 2017), and the majority of fields are on their way toward parity
(Holman et al., 2018). Nevertheless, some journals continue to
favor manuscript submissions from authors of their own gender
(Murray et al., 2019), and many fields, including computer sci-
ence, physics, and math, suggest a gender gap in authorship that
will persist for decades (Holman et al., 2018).

Furthermore, gaps are most notable for last authorships (now
regarded in many fields as the highest-status authorship posi-
tion), where women are often represented at lower rates than
would be expected given their representation in senior faculty
positions (Table 4 vs Table 2) (West et al., 2013; Holman et al.,
2018; Shen et al., 2018). Additionally, although both male and
female researchers have increased in publication rates over the
past decade, some fields (e.g., psychology) have seen relatively
greater increases among men, leading to an increasing gender gap
in authorship over time (Ceci et al., 2014; Holman et al., 2018).
Finally, in contrast to parity in authorship across most other
fields, the data from neuroscience continue to show that women
publish significantly fewer first and last author papers than men
(Schrouff et al., 2019) (see also biaswatchneuro.com).

Awards
Awards for research in STEM remain male-dominated. Across 13
major STEM society awards, 17% of award winners were female
(Lincoln et al., 2012) compared with the base rates of represent-
ing 38% of STEM junior faculty and 27% of STEM senior faculty
(Table 2). Underrepresentation is especially notable in presti-
gious awards: women represent 14% of recipients for the Na-
tional Medal of Science, 12% for the Nobel Prize in Medicine, 6%
for the American Chemical Society Priestly Medal, 3% for the
Nobel Prize in Chemistry, 3% for the Fields Medal in mathemat-
ics, and 1% for the Nobel Prize in Physics (RAISE project, 2018).

While it could be that such underrepresentation is due, in
part, to the relatively later entry of women into STEM (i.e., afore-
mentioned “demographic inertia”) (Hargens and Long, 2002),
such an explanation would not be applicable to early-career
awards. In line with the notion of inertia accounting for award
gaps, some early-career awards, such as the Presidential Early
Career Award for Scientists and Engineers (38% women recipi-
ents among NSF nominees) and the Society for Neuroeconomics
Early Career Award (40% women recipients) reveal award rates
similar to the base rate of 38% of Junior Faculty. Nevertheless,
other early-career awards continue to show disparities, including
the Society for Neuroscience Young Investigator Award (19%
women recipients) and the Elsevier/VSS Young Investigator

Table 4. Percentage of female authors in STEM and non-STEM peer-reviewed
publications, by author statusa

Computer
Science Physics Mathematics Chemistry Biology Psychology Education Health

First author 17% 17% 19% 35% 43% 50% 61% 50%
Last author 15% 13% 19% 21% 29% 40% 49% 46%
Any authorship 16% 17% 18% 30% 37% 48% 55% 49%
aData were most recent available data (2016) retrieved from Holman et al. (2018). Original data were collected from
36 million authors from �100 countries publishing in �6000 journals, accessed via PubMed and arXiv databases.
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Award (25% women recipients). Moreover, one of the most pres-
tigious early-career awards, the NSF Alan T. Waterman Award,
has been won by only 6 women over the past 43 years (14% of
recipients). These early-career data emphasize that, although
some progress has been made, solving gender disparities in STEM
awards is not simply about waiting for women to “catch up”
(Shaw and Stanton, 2012).

Underrepresentation in research awards contrasts with over-
representation in teaching and service awards (Metcalfe, 2015).
For example, in astronomy, where the base rate is that women
receive 10% percentage of PhDs, women receive 3% of scholarly
awards but 15% of teaching and service awards (Popejoy and
Leboy, 2018). As discussed in Part 2, the reasons for such over-
representation in teaching awards are likely complex, including
women’s advantages in language and communication abilities, as
well as differences in where women versus men are expected to
succeed. Indeed, the recognition of women for teaching, but not
research, aligns with the expectations that women are warm but
incompetent (Glick and Fiske, 1996; Fiske et al., 2002), and there-
fore should be good teachers but poor researchers. In sum, evi-
dence is strong that gender disparities in STEM encompass gaps
in representation, compensation, research awards, and, to a lesser
extent, grant success and authorship.

Part 2: Presumed causes of gender disparities in
science
In the past, a dominant assumption about gender disparities in
STEM concerned women’s lack of ability due to biological, in-
nate, and/or immutable differences (Keller, 1985). Over time, a
more complex possibility was added: observed gender differences
may not be exclusively shaped by innate or immutable abilities
but may also be influenced by sociocultural factors (Ceci et al.,
2014). Along a different dimension, it was previously assumed
that the social barriers to women’s entrance and advancement in
STEM were exclusively from the prejudices held by men about
women. Over time, this assumption has also been revised: both
men and women evaluators can be involved in gender discrimi-
nation (e.g., Moss-Racusin et al., 2012). Finally, while the focus
was previously on the biases of other people evaluating the work
of women, a more complex thesis also looks at possible bias
within both women and men themselves, including their own
preferences, biology, and social experiences that may encourage
opting in (or out) of certain careers (e.g., Diekman et al., 2010).
Thus, the presumed causes of gender disparities in STEM have
shifted over time as new evidence and interpretations emerge.

Today, the debates surrounding the causes of gender dispari-
ties in STEM often settle around three interrelated hypotheses.
Gender disparities may arise from (1) innate and/or socially de-
termined gender differences in STEM ability, (2) innate and/or
socially determined gender differences in STEM preferences and
lifestyle choices, and (3) explicit and implicit biases of both men
and women in perceptions of men and women’s work.

Differences in ability
Given the complexity of STEM careers, the abilities predicting
success must be diverse. Yet for most of the 20th century, re-
searchers focused almost exclusively on predicting gender differ-
ences in STEM success from single skills, such as math ability
(Hyde, 2014). It was only at the end of the 20th century, after
decades of data on standardized tests had accumulated, that evi-
dence suggested the gender differences were rapidly closing for
many cognitive abilities, including math ability (Feingold, 1988).

Recent representative studies and meta-analyses reinforce this
result, showing that gender gaps in overall math performance
have dropped to trivial differences: studies of �7 million students
in state math assessments indicate gender differences of only d �
0.0065, meaning that the averages of men and women on math
assessments are almost perfectly overlapping (Hyde et al., 2008).
And a meta-analysis of 242 studies shows a mere difference of d �
0.05 on math performance, again indicating almost perfect over-
lap of men and women’s average performance (Lindberg et al.,
2010). The weight of the evidence therefore implies gender parity
in math ability (Hyde, 2014, 2016; Zell et al., 2015).

In response, some researchers and public officials have argued
that, while gender differences have disappeared in average
mathematics ability (i.e., the middle of the distribution), men
nevertheless remain overrepresented as high-performers (i.e.,
right-tail of the distribution) (Ceci et al., 2014). On the one hand,
nationally representative samples indeed reveal slight but consis-
tent advantages for boys on standardized math tests, with a 2:1
overrepresentation among math high-performers from kinder-
garten (Penner and Paret, 2008) to grade 7 (Wai et al., 2010). On
the other hand, these same studies reveal that the gender gap in
high-performers has closed rapidly over time, moving from
13.5:1 in the 1980s, to 3.8:1 in the 1990s, to 2:1 today (Penner and
Paret, 2007; Wai et al., 2010). This rapid closing of the gap on
both average and high-performing math ability (Wai et al., 2010;
Hyde, 2014) challenges the assumption that differences are
rooted in immutable traits.

Additionally, gender differences in both average and high-
performing math ability vary greatly across cultures (Else-Quest
et al., 2010; Gray et al., 2019), across U.S. states (Pope and Syd-
nor, 2010), and across ethnic groups (Penner and Paret, 2008;
Hyde and Mertz, 2009), providing evidence of mutability based
on local contexts. Finally, gender differences in math perfor-
mance are most notable when gender stereotypes are activated
before a test: creating stereotype threat by framing a math test as
“known to show gender differences” impairs females’ perfor-
mance relative to framing the same test as “not showing gender
differences” (Spencer et al., 1999; Nguyen and Ryan, 2008; but see
Stoet and Geary, 2012). This further highlights the role of muta-
ble beliefs rather than immutable biological traits as the most
likely explanations of historic gender differences in math perfor-
mance. Thus, there remains no compelling evidence that gender
differences in math ability are immutable or biologically innate
(Spelke, 2005; Ceci and Williams, 2010; Ceci et al., 2014; Hyde,
2016).

Moreover, even an overrepresentation of 2:1 among math
high-performers would not be sufficient to account for the nearly
5:1 disparity seen in the representation of senior faculty in STEM
fields (Table 2), the 7:1 disparity seen in first versus last author-
ship rates for some fields (Table 4), or differences in median
salaries (Table 3). Other factors must therefore contribute, such
as gender differences in academic self-efficacy (Dixson et al.,
2016) or math confidence (Flanagan and Einarson, 2017). In
sum, because gender differences in math ability (1) produce small
to nonexistent effects, (2) are disappearing over time, and (3)
cannot fully explain the large and persistent gaps, it can no longer
be said that women and men are treated differently in STEM
because of different cognitive capacities in mathematics. Recog-
nizing this conclusion, researchers have turned to examining
other abilities that may contribute to gender differences in STEM.

Two additional skills relevant to STEM success are spatial and
language ability, and both show consistent gender differences
(Halpern et al., 2007). On many tests of spatial cognition, espe-
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cially those involving 3D mental rotation tasks, men significantly
outperform women, with a meta-synthesis of 70 meta-analyses
revealing that men are approximately one-half an SD above
women (d � 0.57) (Zell et al., 2015). However, even on 3D rota-
tion tasks, gender differences fluctuate as a function of subject
age, testing format, and test framing (Voyer et al., 1995; Huguet
and Régner, 2009; Voyer, 2011), with reversals to female advan-
tages even observed when mental rotation tasks are framed as “art
tasks” rather than “math tasks” (Huguet and Régner, 2009).
Furthermore, other aspects of spatial cognition reveal female ad-
vantages (e.g., object identity memory), or no gender differences
(e.g., object location memory) (Voyer et al., 2007).

In contrast to spatial cognition, language skills appear to con-
sistently favor women (Hyde and Linn, 1988; Halpern et al., 2007;
Miller and Halpern, 2014). Recent estimates from national as-
sessments document female advantages of approximately one-
fourth of an SD (d � �0.27) for reading and one-half SD (d �
�0.54) for writing (Reilly et al., 2019). Moreover, gender gaps in
language ability have not shown significant change from 1988 to
2011 (Reilly et al., 2019). This implies that the causes of language
differences, whether biological, as suggested by the overrepresen-
tation of men with reading impairments (Rabiner and Coie,
2000; Halpern et al., 2011a), and/or socio-psychological, as sug-
gested by the sex-typing of language abilities as “female” (Mari-
nak and Gambrell, 2010; Halpern et al., 2011b), have remained
stable over time, unlike closing gaps for other abilities.

Although often overlooked, the role of reading and writing is
arguably just as relevant to STEM as math or spatial skills. The
ability to comprehend verbal material and to communicate effec-
tively through writing and speaking are obvious components of
success inpublications,grants,presentations,andeffectiveSTEMteach-
ing or leadership. Indeed, long-term success in STEM careers is likely to
be predicted by a set of skills, including abilities in language, spatial ro-
tation, math, and more (Ackerman et al., 2013). It is therefore worth
focusing on the diversity of skills available within an individual rather
than emphasizing any single quality.

Differences in preferences, values, or lifestyle choices
The cause of gender disparities in STEM has increasingly been
linked to gendered roles, values, and lifestyle preferences (Ceci et
al., 2009, 2014; Ceci and Williams, 2011). In particular, the “goal
congruity hypothesis” (Diekman et al., 2010) was so-named to
capture the idea that women make the choice, from both socio-
cultural pressures and innate psychological orientations, to opt
out of STEM because they perceive their gendered goals to be
incongruent with the nature of STEM work, the opportunities
available in STEM, and their likelihood of success. Simply,
women perceive a mismatch between their goals/values and the
STEM environment.

These values are argued to arise early in childhood, when boys
and girls experience both social pressures and possibly innate
inclinations to occupy different roles: boys are expected to (and,
on average, do) prefer activities that are competitive and active,
whereas girls are expected to (and, on average, do) prefer activi-
ties that are communal and involve helping (Eagly, 1987). These
early-formed values cascade into later life, with women more
likely to endorse communal, group-serving, people-oriented,
family, and altruistic values, and men more likely to endorse
agentic, self-serving, thing-oriented, money, and status values
(Ferriman et al., 2009; Su et al., 2009; Diekman et al., 2010; Weis-
gram et al., 2011).

Simultaneously, STEM environments are perceived, on both
explicit self-reports and indirect implicit measures, to be envi-

ronments that endorse power, status, competitiveness, and isola-
tion (Diekman et al., 2011). Such qualities are therefore viewed as
incompatible with the communal group-serving values that
women (more than men) appear to endorse (Diekman et al.,
2015). Analogously, evidence points to men avoiding communal
group-serving environments (e.g., healthcare, early education,
and domestic work) because these careers are viewed as incom-
patible with both the status-based and self-serving values that
men (more than women) appear to endorse (Block et al., 2018).

As a consequence of such mismatch between values and envi-
ronments, women may be particularly likely to opt out of (and
men particularly likely to opt into) subfields that are perceived to
strongly endorse the “brilliance,” status, and competition (i.e.,
mathematics, engineering, and computer science), thereby ac-
counting for differences in representation across subfields
(Meyer et al., 2015; see, e.g., Leslie et al., 2015). Additionally,
women may be more likely to select low-paying part-time posi-
tions to better facilitate family goals, whereas men may be more
likely to select high-paying status-based positions, possibly con-
tributing to the gender pay gap. Women may also be more likely
to perform service activities to satisfy communal group-serving
values, whereas men may be more likely to focus on research
activities to satisfy agentic self-serving values, contributing to
disparities observed in service versus research awards. The match
between values and environments (i.e., goal congruity) may
therefore play a role in explaining gender gaps across representa-
tion, pay, and recognition.

Yet the question remains whether STEM environments are
inherently incompatible with values that women are more likely
to endorse, or whether generations of male-dominated STEM
environments have led to a perception of incompatibility. If it is
more about historical perceptions, then increasing the percep-
tion that a STEM environment can satisfy group-serving values
should correspondingly increase women’s success and persis-
tence in STEM.

Indeed, describing STEM tasks and careers as emphasizing
communal group-serving values (Diekman et al., 2015), helping
(Weisgram and Bigler, 2006), or dedication (Bian et al., 2018),
rather than competition, isolation, or brilliance, increases wom-
en’s interest in pursuing and persisting in STEM. For example,
when female general population participants read about a STEM
internship or major that emphasizes dedication (vs brilliance),
they are approximately one-half an SD more likely to report in-
terest (Bian et al., 2018). Similarly, females in college are found to
be more likely to feel like they belong in STEM after subtle envi-
ronmental cues that emphasize STEM stereotypes of isolation or
competition (e.g., Star Trek posters) are removed (Cheryan et al.,
2009). Thus, the goal mismatch appears to be rooted in percep-
tion rather than inherent features of STEM environments. As
such, it is important to examine where this perception comes
from (Cheryan et al., 2017), especially the role of implicit and
explicit biases in shaping perceptions of beliefs, values, and the
environment.

Explicit and implicit bias
Beliefs and stereotypes that associate men, more than women,
with science, math, leadership, or careers have long been docu-
mented on explicit, self-report measures and representative polls
(General Social Survey, 2019). Yet self-reports are limited in that
respondents may be unwilling to state their full beliefs (for fear of
appearing biased), and/or may be unable to state their full beliefs
(because of limited introspective access to one’s own mind)
(Greenwald and Banaji, 1995). Recognizing these limitations, re-
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searchers have argued that biased beliefs can exist at both an
explicit and implicit level: the latter being relatively more auto-
matic, less conscious, and less controllable than the former. The
most widely used measurement of implicit biases, the Implicit
Association Test (IAT) (Greenwald et al., 1998), uses response
latencies to indirectly capture the overlap between concepts, such
as “male” and “science” versus “female” and “arts.”

Implicit and explicit biases are related but distinct psycholog-
ical constructs (Nosek and Smyth, 2007). For instance, while a
person responding to a survey may explicitly say that they believe
both men and women are capable in science, the same person
may nevertheless show faster responses when pairing male-
science (and female-arts) words compared with when pairing
male-arts (and female-science) words, suggesting that they hold
implicit beliefs linking men (more than women) with science
over arts. Crucially, explicit and implicit biases both contribute to
predicting behaviors and outcomes (Kurdi et al., 2019) and are
therefore both necessary to understand the operation of bias in
STEM. Moreover, given the general disappearance of explicit bias
against women in STEM (General Social Survey, 2019), it would
be difficult to explain the slowness of change in women’s repre-
sentation and success without considering the possibility that
biased gender perceptions and evaluation may also emanate from
mental operations outside conscious control.

To understand the possible role of implicit and explicit biases
in STEM gender disparities, the extent of these biases needs to be
examined. If implicit biases are only identified, for example, in
older adults, men, or those from particular geographic regions,
then the biases are unlikely to play a role in accounting for wide-
spread gender gaps in STEM. If, however, implicit biases are
found to be persistent and pervasive, then their role within STEM
becomes more meaningful. More than two decades of research
on implicit gender stereotypes have conclusively shown that gen-
der biases in STEM are indeed prevalent across the lifespan,
across genders, across nations, and across time.

Implicit gender bias across the lifespan
Implicit gender-STEM stereotypes are documented from the ear-
liest ages tested: by at least 6 years of age, both boys and girls
implicitly associate math with boys more than with girls (Cvencek et
al., 2011). Even in Singapore, a country where girls excel in math-
ematics, implicit stereotypes of boys � math/girls � reading are
similarly early-emerging for both boys and girls (Cvencek et al.,
2014). This is striking as it suggests that biased beliefs may
emerge, even in the absence of evidence. At the same ages, chil-
dren also endorse explicit stereotypes, including the belief that
math is more for boys than girls (Cvencek et al., 2011), and that
boys, more than girls, are “really, really smart” (Bian et al., 2017).

New analyses of nearly 300,000 respondents from the Project
Implicit Demonstration website (http://implicit.harvard.edu)
extend these findings through adolescence and adulthood, pro-
viding similar conclusions of early emergence (Fig. 3). By ele-
mentary and middle school (respondents �14 years old), 58% of
respondents already show a strong, moderate, or slight implicit
stereotype that men � science/women � arts, whereas only 17%
show an opposite stereotype of women � science/men � arts and
25% show a neutral association, as measured by the IAT.

Notably, the strength of the implicit men � science/women �
arts association increases slightly through the later lifespan: 68%
of high schoolers, 71% of college students, 68%– 69% of early-
career respondents (ages 22– 40), 72%–74% of mid-career re-
spondents (ages 40 –55), and 77% of older respondents (ages
55	) show implicit men � science/women � arts associations,

with similar age-related trajectories in both women and men.
Although these data are cross-sectional (making it difficult to
disambiguate an age effect from an effect of historical changes
over time), the increasing stereotype strength across ages never-
theless mirrors the trends of increasing underrepresentation
from high school to college to full professorships. Age-related
increases in stereotype strength may therefore represent either a
cause and/or consequence of increases in gender disparities
across career trajectories.

Implicit gender bias across genders
Surprisingly, women and men hold similarly strong implicit
gender-STEM stereotypes. Data from Project Implicit show that,
overall, 69% of women and 72% of men express slight, moderate,
or strong implicit men � science/women � arts associations (see
also Nosek et al., 2007). Nevertheless, gender differences in im-
plicit stereotypes emerge among scientists from particular STEM
subfields (Nosek and Smyth, 2011; Smeding, 2012; Smyth and
Nosek, 2015): women employed in male-dominated subfields
(e.g., math or engineering) express significantly weaker implicit
men � science/women � arts stereotypes than men in those
subfields, whereas women employed in female-dominated sub-
fields (e.g., humanities) express significantly stronger stereotypes
than men in those subfields. This suggests that women already in
science may perceive science as equally applicable to women and
men, perhaps as a consequence of their own identification with
science (e.g., Nosek et al., 2002), or being exposed to more female
scientist role models (Dennehy and Dasgupta, 2017). In contrast,
women outside of science may neither identify with science nor
be exposed to the same frequency of female scientists and may
therefore associate STEM more with men than women. However,
it is worth emphasizing that even women already in science still
hold an implicit stereotype of men � science/women � arts
(Smyth and Nosek, 2015), implying that identification alone may
not be sufficient to override pervasive cultural stereotypes.

Implicit gender bias across countries
In every country where the IAT has been used, there is an associ-
ation of men � science/women � arts (Nosek et al., 2009; Miller
et al., 2015). No country shows the opposite association. Yet,
despite this widespread prevalence, there is also meaningful vari-

Figure 3. Implicit men � science/women � arts stereotypes across the lifespan, by gen-
der. Data from the Project Implicit Demonstration website. For compiled raw data and code, see
https://osf.io/n9jca/.
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ability. Nation-level differences in the strength of implicit
gender-science stereotypes are correlated with nation-level dif-
ferences in gender gaps on national eighth grade math and sci-
ence assessments (Nosek et al., 2009), as well as nation-level
differences in gender gaps in STEM representation (Miller et al.,
2015). These results are important because they highlight (1) that
implicit gender-science stereotypes are not necessarily innate or
inherent, since they vary across countries, and (2) that implicit
gender-science stereotypes can help explain gender disparities in
STEM, since variability in stereotypes correlates with variability
in STEM achievement and representation.

Implicit gender bias across time
Explicit gender stereotypes and attitudes against working women
and female scientists have decreased markedly over the past sev-
eral decades (CNN, 2012; Huang et al., 2018; General Social Sur-
vey, 2019). Yet absence of bias has not been achieved: even on
self-reported attitudes and beliefs, 25% of U.S. respondents in
2018 agreed or strongly agreed that it was better for a man to work
and a woman to stay home (General Social Survey, 2019). More-
over, subtle biases are even more persistent, with women still
perceived as “warm” but “incompetent” (Haines et al., 2016;
Fiske, 2018), and still described with words, such as “caring” and
“emotional,” rather than words, such as “competent” or “intelli-
gent” (Garg et al., 2018). While some progress has been made,
gender bias continues in both explicit and subtle ways.

In line with this simultaneous progress and stability, new anal-
yses of the Project Implicit dataset examining change in implicit
men � science/women � arts stereotypes from 2007 to 2016
reveal that implicit gender stereotypes have decreased by �16%
overall (comparable to change in implicit race and skin-tone at-
titudes) (Charlesworth and Banaji, 2019a). Crucially, however,
this change appears to be largely isolated to women (whose im-
plicit bias has decreased by 19%), with relatively little change
observed among men (decreased by only 6%; Fig. 4). This result is
unique, as almost every other implicit attitude or stereotype
shows parallel change between men and women; there appears to

be a particular intransigence among men’s implicit gender-
science stereotypes. Moreover, although overall trends of change
in implicit gender stereotypes are both surprising and encourag-
ing, the biases remain far from neutrality and suggest relative
persistence over time.

In sum, implicit gender-science stereotypes are present across
the lifespan, in both men and women, in every nation, and across
time. Such persistence and prevalence in implicit biases match
the prevalence of gender disparities in STEM representation, pay,
and recognition. Together, these data reinforce that (1) gender-
science stereotypes exist both in explicit statements and on
implicit measures that tap less controllable beliefs; (2) gender-
science stereotypes are not isolated to some people in only some
parts of the world but, rather, are widespread; and (3) this perva-
siveness, as well as variability within and across regions, provides
an opportunity for deeper theoretical understanding of the
mechanisms behind gender disparities in STEM.

The operation of implicit and explicit gender biases in STEM
If implicit and explicit biases indeed play a causal role in gender
disparities in STEM, how would one know? What would evidence
for bias look like? Complementary sources of evidence would be
most persuasive. First, if bias is operating, then observational
evidence of gender disparities (e.g., data on representation, pay,
and awards/recognition) should reveal persistent disparities,
even after alternative explanations or correlated variables are ac-
counted for (e.g., subfield, part-time vs full-time job status). For
example, the aforementioned 9% pay gap that persists after con-
trolling for alternative explanations implies that an additional
causal mechanism (i.e., bias) may be operating.

Second, if bias is operating, then correlational evidence should
reveal a relationship between the magnitude of gender disparities
and the magnitude of implicit or explicit gender stereotypes. This
is suggested, for example, in the finding that larger gender gaps on
national science and math assessments are positively correlated
with stronger implicit gender-science stereotypes on the IAT,
even after controlling for explicit stereotypes and alternative ex-
planations (Nosek et al., 2009).

Third, the strongest evidence for bias is experimental. In par-
ticular, experimental resume and audit studies can show that
identical candidates (with the same resume and qualifications)
receive differential treatment exclusively due to gender, and that
the extent of such differential treatment is predicted by evalua-
tors’ explicit and implicit gender stereotypes. With these three
standards of evidence, the possible operation of bias is examined
in (1) hiring and compensation, (2) grants, publications and
awards, and (3) organizational and academic culture.

Hiring and compensation
Evidence for the operation of gender biases in hiring and com-
pensation comes primarily from experimental audit studies
showing that women applicants in STEM are less likely to be
hired and also receive lower starting salaries than men with iden-
tical records (Steinpreis et al., 1999; Moss-Racusin et al., 2012;
Reuben et al., 2014; Milkman et al., 2015; but see Williams and
Ceci, 2015). To illustrate one such study, Moss-Racusin et al.
(2012) asked faculty from biology, chemistry, and physics to eval-
uate the application of a prospective laboratory manager on their
hire-ability, competence, suggested salary, and deservingness of
mentoring. Candidates’ applications were identical, with the ex-
ception of whether the candidate’s name was female or male.

Six results from this study are notable: (1) despite identical
resumes, the female candidate was perceived as less hire-able than

Figure 4. Change over time in implicit men� science/women�arts stereotype, by gender
(2005–2017). Weighted monthly means (weighting to control for sample change over time)
are plotted in thin gray (for men) and black lines (for women). Decomposed trend lines (remov-
ing seasonality and random noise) are plotted in thick gray (for men) and black lines (for
women). Data from the Project Implicit Demonstration website. For compiled raw data and
code, see https://osf.io/n9jca/. For further details on analysis method, including controls for
alternative explanations, such as sample change over time, see Charlesworth and Banaji
(2019b).
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the male candidate; (2) the female candidate was offered the
equivalent of 88% of the male candidate’s salary; (3) the female
candidate was perceived to be less deserving of mentoring than
the male candidate; (4) both male and female faculty evaluators
were more likely to select and more generously compensate and
mentor male candidates; (5) the extent of differential evaluation
was mediated by the perception of greater competence in male
than female candidates; and (5) the extent of this perceived com-
petence gap was, in turn, moderated by the strength of faculty’s
subtle gender bias (measured via self-reported modern sexism or
beliefs that are benevolent but paternalistic) (Swim et al., 1995).
Together, these findings highlight the operation of subtle gender
biases as a mechanism behind hiring, compensation, and men-
toring disparities (Moss-Racusin et al., 2012).

Importantly, implicit biases measured through the IAT have
also been shown to explain such gender disparities. For instance,
Reuben et al. (2014) asked participants (“employers”) to hire a
candidate for a simple math task, and were given a choice be-
tween two candidates who were matched on performance but not
gender. Further, in some conditions, employers were given infor-
mation about the candidates’ past performance on the math task.
The results provide three noteworthy conclusions. First, when
employers had no information other than the candidates’ gender,
the employers (both male and female) were half as likely to hire
the female candidate than the male candidate, implying a baseline
preference for males over females. Second, this gender-biased
hiring was reduced, but not eliminated, when employers were
given information about the two candidates’ identical past per-
formance, indicating that the employers were not sufficiently up-
dating their beliefs. That is, if employers had sufficiently updated
following evidence of equivalent performance, then hiring
should also have been equivalent between male and female can-
didates. Third, both the extent of the initial hiring bias and the
extent of the updating bias were correlated with employers’ im-
plicit stereotypes associating men � math and science/women �
liberal arts. Thus, implicit bias may help explain not only initial
gaps in hiring and representation but also the persistence of these
gaps, even in the face of evidence showing women’s capacities
and success in STEM.

Large-scale correlational data are consistent with these exper-
imental findings. On explicit measures of bias, the greater the
number of academics in a STEM field who endorse the beliefs that
(1) brilliance (rather than dedication) is required for success, (2)
men are more brilliant than women, and (3) women are not
suited to scholarly work, the lower the representation of female
faculty in those fields (Leslie et al., 2015; Meyer et al., 2015).
Similarly, the higher the endorsement of an explicit association
between science and male, the lower the number of female faculty
in that field (Smyth and Nosek, 2015). Importantly, these corre-
lations between representation and explicit stereotypes remain
significant after controlling for proxies of personal values (e.g.,
perceived selectivity/competitiveness of the field, working part-
time vs full-time to satisfy family values). Thus, the role of bias
may persist above values and lifestyle choices.

Women’s representation in STEM is also correlated with im-
plicit measures of gender bias. First, the more men majoring in a
STEM field express the implicit men � science/women � arts
stereotype, the lower the number of women in that field (Smyth
and Nosek, 2015). Second, the more a nation expresses the im-
plicit men � science/women � arts stereotype, the lower the
number of women in STEM in that nation (Miller et al., 2015).
Third, the more a field describes professors with traits of bril-
liance and genius (as measured indirectly through language in

teaching evaluations), the lower the number of women in that
field (Storage et al., 2016). Finally, recent evidence suggests that
the greater the implicit men � science stereotype of a promotions
committee (and the less that committee believes that external,
systemic barriers hamper women’s success in STEM), the less
likely women are to be promoted by the committee (Regner et al.,
2019). Again, statistically significant correlations between im-
plicit stereotypes and representation remain after controlling for
measures of mathematics aptitude, field selectivity, or hours
worked (i.e., part-time/full-time), again suggesting a role for bias
above alternate explanations, such as ability or values.

Nevertheless, evidence from these experimental and correla-
tional studies needs to be reconciled with data from the NSF, the
National Center for Education Statistics, and faculty surveys re-
porting that, from 1995 to 2003, women applying for professor-
ships in STEM were hired at rates commensurate to their
application rate, implying no hiring biases (National Academy of
Sciences, 2010). Additionally, a recent audit study suggests that,
in fields of biology, psychology, and engineering, women appear
to have a 2:1 advantage in hiring for tenure-track positions (Wil-
liams and Ceci, 2015).

Explaining such discrepancies will likely require many factors,
including (1) changes over time in the focus on equitable hiring
practices and proactive efforts to reconcile past gender disparities
(leading earlier studies to show more bias than later studies), (2)
experimental differences in the measured outcomes (e.g., hiring a
laboratory manager vs evaluating a candidate for a math task vs
hiring a tenure-track faculty) and the fields studied (e.g., psychol-
ogy vs engineering), and/or (3) applicant differences (e.g., women
may have a higher threshold and be more self-selective for apply-
ing to jobs) (Ceci et al., 2014). Continued research is needed to
resolve correlational, experimental, and observational evidence,
as well as to understand disproportionately lower hiring rates and
compensation of mothers, racial minority women, women in
high-status positions, and women in engineering and computer
science.

Publications, grants, and awards
Observational evidence, reviewed in Part 1, suggests the encour-
aging result of overall gender parity in authorship, grants, and
awards in STEM. Nevertheless, subtle gender differences persist
on indicators, such as (1) last authorship positions (Holman et
al., 2018), (2) application rates for the top 1% of grants (Hosek et
al., 2005), and (3) rates of research versus service awards (Met-
calfe, 2015; Popejoy and Leboy, 2018). While these data suggest
the operation of bias because gender disparities persist after ac-
counting for alternative explanations, compelling experimental
evidence for the operation of implicit and explicit biases in pub-
lications, grants, and awards remains limited (Eagly and Miller,
2016).

With respect to gender bias in academic publications, audit
studies indicate that publications, conference abstracts, and fel-
lowship applications from men are more likely to be accepted,
rated as higher quality and indicating more competence, and
given more collaboration interest than quality-matched materi-
als from women (Wenneras and Wold, 1997; Knobloch-
Westerwick et al., 2013; Krawczyk and Smyk, 2016). These few
studies imply that subtle disparities in publications may arise
from biased evaluations from peer reviews.

On the other hand, removing gender (i.e., by masking the
author’s gender through double-blind reviews) does not appear
to increase the rate of publication success for women (Webb et
al., 2008; Tomkins et al., 2017). While it is possible that the lack of
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efficacy in double-blind review is due to men producing better
publications (for many reasons, including differences in caregiv-
ing demands, or differences in risk-taking with “big” research
ideas), it may be more likely due to the fact that author gender can
be detected, even without the author’s gendered name. Indeed,
author gender could be determined using cues, such as style of
writing (Argamon et al., 2003), word use (Kolev et al., 2019), and
overall tendency to self-cite (Eagly and Miller, 2016). Thus, re-
viewers’ implicit or explicit biases may be able to persist, even
under double-blind conditions because the reviewers can still
detect author gender.

The operation of gender bias in grants and awards has also re-
ceived limited experimental study. One recent experimental audit
study shows no evidence of gender bias in initial grant reviews at
NIH (Forscher et al., 2019). Additionally, a review screening 170
papers identified only one study that directly assessed the effect of
gender bias in grant review (Tricco et al., 2017). This study found
that removing gender through double-blinding did not increase the
proportion of women’s successful grant applications (Ledin et al.,
2007), although (as aforementioned) double-blind conditions may
not entirely eliminate evaluators’ ability to detect applicants’ gender,
and the conclusions are therefore limited.

Finally, to our knowledge, there remains no experimental ev-
idence that directly measures the role of implicit or explicit biases
in the persistent gap in research versus service awards (Lincoln et
al., 2012; Popejoy and Leboy, 2018), suggesting an important
focus for future research. While numerous cognitive biases (e.g.,
shifting standards, halo effects, confirmation bias) are likely to
disrupt objectivity in the review of publications, grants, and
awards (Kaatz et al., 2014), further research is needed to experi-
mentally quantify the role of such biases.

Organization and academic culture
Beyond disparities of representation, compensation, and recog-
nition, implicit and explicit biases may also operate in the expe-
riences of the organization and academic culture. Gender
differences in experiences of a hostile culture have received in-
creasing attention through the #metoo movement and highly
publicized allegations of harassment. Large-scale empirical re-
ports also indicate that hostile culture is a persistent and pervasive
problem: at least half of all female academics in STEM (vs 19% of
male academics in STEM) report experiencing sexual harass-
ment, and even greater numbers (78%) of females in male-
dominated STEM workplaces report experiencing gender-based
discrimination (Funk and Parker, 2018; National Academies of
Sciences Engineering and Medicine, 2018).

The operation of bias in producing these gender differences in
organizational experiences is suggested by audit studies showing
that a female scientist is offered less mentorship relative to an
identical male scientist as a result of the evaluators’ biases (Correll
et al., 2007; Moss-Racusin et al., 2012). This decreased mentoring
may, in turn, hamper female scientists’ feelings of belonging and
identification and exacerbate feelings of a hostile climate. Indeed,
women in STEM are more likely than men to report a lack of
belonging (Cheryan and Plaut, 2010; Cheryan et al., 2017;
McPherson et al., 2018), a lack of support and free expression
(Xu, 2008), a lack of mentorship and role models (Cheryan and
Plaut, 2010; Cheryan et al., 2011), and a lack of feeling identified
with or competent in STEM (Spencer et al., 1999; Ertl et al.,
2017), including on implicit measures (Nosek et al., 2002).

Finally, correlational studies show that the extent of reported
gender-based harassment in an academic field is correlated with
the strength of men’s implicit gender stereotypes in that field, as

both gender-based harassment and implicit gender stereotypes
are greatest in male-dominated fields (see also Smyth and Nosek,
2015; Dresden et al., 2018). Thus, although no direct experimen-
tal evidence can be offered for the operation of bias in producing
hostile organizational climates, correlational data, audit studies
on mentoring, and observational data on belonging together sug-
gest a possible role for implicit and explicit biases that is worthy of
attention (Funk and Parker, 2018; National Academies of Sci-
ences Engineering and Medicine, 2018).

Part 3: How? Proposed solutions to gender
disparities in science
When faced with the type of data presented in Parts 1 and 2,
nearly every STEM organization has had to consider the ways to
address the biases, both inside and outside women themselves,
that limit women’s full participation in STEM (National Acad-
emy of Sciences, 2006, 2010; Hill et al., 2010; Lebrecht et al., 2012;
Corbett and Hill, 2015; Valantine and Collins, 2015; National
Science Foundation National Center for Science and Engineering
Statistics, 2017). Crucially, because the issues of gender in STEM
involve human beliefs and decision-making that seem familiar to
all individuals, there are often well-intentioned interventions
based only on personal experiences or intuitions and not
grounded in evidence or routine evaluations. Such approaches
may backfire. For example, Dobbin and Kalev (2013) showed
that most diversity training implemented from the 1960s to the
early 2000s had either no impact or even slightly reduced the
diversity of the workforce (see also Paluck and Green, 2009).
Addressing gender bias in STEM should therefore be treated with
rigorous evidence, as would be expected of any other STEM proj-
ect (Kang and Kaplan, 2019). This section provides a brief review
of recent and rigorous evidence-informed and evaluated inter-
ventions that focus on reducing gender disparities in STEM by
changing individual minds/behavior (i.e., individual-level gen-
der bias) or organizational cultures/practices (i.e., organization-
level gender bias).

Changing individual-level gender bias
Individual-level bias emerges in both “perceivers” (e.g., individ-
uals making decisions about a person at the time of recruiting,
hiring, or promoting) as well as in “targets” themselves (e.g.,
women’s and men’s own beliefs about themselves in STEM).
Individual-level interventions therefore differ in whether they
focus on reducing the biases of perceivers or targets.

First, to reduce the biases of perceivers, and to increase their
willingness to promote change, interventions using a “habit-
breaking” approach have been shown to effectively reduce both
racial and gender biases (Devine et al., 2012, 2017; Carnes et al.,
2015; Forscher et al., 2017). These interventions assume that im-
plicit biases are like “habits.” As such, bias is best addressed by
making participants aware of the biased habits they may have
through education on the science of implicit bias and its conse-
quences for behavior. After promoting bias awareness, partici-
pants in the “habit-breaking” intervention are equipped with
strategies argued to reduce bias in the mind. For example, partic-
ipants are taught techniques, such as “putting oneself in another’s
shoes” (perspective-taking), thinking of people from other
groups as individuals rather than just as homogeneous group
members (individuation), and generating examples of people
from other groups who challenge stereotypical assumptions (e.g.,
Marie Curie; counterstereotype exposure). While some of these
strategies have shown mixed effects when implemented in isola-
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tion, especially perspective-taking (Catapano et al., 2019) and
intergroup contact (Paluck et al., 2018), the combination of strat-
egies, coupled with the educational approach, shows promise in
addressing gender disparities in STEM.

To illustrate, in a cluster-randomized-controlled trial of 92
STEM departments, faculty members in departments that re-
ceived the 2.5 h “habit-breaking” workshop reported more
awareness of implicit bias and more actions to promote gender
equity, even after a delay of 3 months (Carnes et al., 2015). These
individual-level changes also trickled up into organization-level
changes in both culture (with greater experiences of belonging
reported by both men and women) (Carnes et al., 2015) and
practices (with more gender-equitable hiring) (Devine et al.,
2017). Indeed, while the number of women hired in control de-
partments remained unchanged over 2 years, the number of
women hired in intervention departments increased by 18%.
Thus, “habit-breaking” appears to have real-world effectiveness
in STEM.

Although promising, the habit-breaking intervention never-
theless requires a relatively large time commitment and trained
educators. As such, it may not be easily and widely applied across
organizations. Partly to address scalability, the Video Interven-
tions for Diversity in STEM (https://academics.skidmore.edu/
blogs/vids/) adopt similar approaches to the “habit-breaking”
interventions by promoting gender bias literacy through freely
available videos consisting of six 5 min presentations, each dis-
cussing the results of a peer-reviewed study on gender bias. Video
Interventions for Diversity in STEM have been found to success-
fully reduce explicit gender biases, increase awareness of everyday
bias, and increase self-efficacy to confront bias among both gen-
eral public and academic faculty participants (Pietri et al., 2017;
Hennes et al., 2018; Moss-Racusin et al., 2018), and may be ap-
plicable for many organizations.

Finally, interventions using evidence-based confrontation, in
which participants are provided with objective, personalized ev-
idence of having exhibited gender bias in evaluations, have also
shown some effectiveness in reducing perceiver biases (Parker et
al., 2018). Specifically, these interventions have been found to
increase participants’ negative self-directed affect (e.g., guilt)
and, as a consequence, increase participants’ concern about, and
intentions to control, future bias. However, confrontation inter-
ventions also produce defensiveness (Parker et al., 2018) and,
without labor-intensive personalization, are often dismissed
(Gulker et al., 2013). Additionally, they appear to be less effective
in changing the biases of men than women (Handley et al., 2015;
Moss-Racusin et al., 2015). Given the dominant presence of men
in STEM, this lower efficacy for men is a nontrivial concern, and
evidence-based confrontations may therefore need further study.

Beyond the biases of the perceivers, there is also a role for the
self-defeating perceptions, attitudes, and beliefs held by those in
underrepresented groups (e.g., women themselves) (Jost and Ba-
naji, 1994; Jost et al., 2004). To this end, interventions have fo-
cused on increasing identification, belonging, and persistence
among the targets of discrimination. With this goal, promising
interventions have found that contact with female (vs male)
peers, professionals, and teachers improves women’s implicit
identification with STEM, as well as greater self-efficacy and more
effort on STEM tests (Stout et al., 2011). Indeed, even a 1 h
interaction with a female role model in STEM increases the prob-
ability that Grade 12 students in France will enroll in a selective
male-dominated STEM class by up to 30% (Breda et al., 2018).
And a single letter from a female role model can improves course

grades and reduces dropout among U.S. introductory psychology
and chemistry students (Herrmann et al., 2016).

Crucially, in contrast to the assumption that women can only
achieve benefits from female role models (which inadvertently
places an additional service burden on female mentors), the gen-
der of the role model appears to be less important than their
ability to challenge stereotypes (Cheryan et al., 2011; Fuesting
and Diekman, 2017). For example, if a male role model chal-
lenges STEM stereotypes (e.g., by wearing a plain T-shirt rather
than a T-shirt reading “I code therefore I am,” or expressing that
they like to hang out with friends rather than that they like to
watch anime), the counterstereotypical male role model appears
to be just as helpful as a female role model in promoting women’s
beliefs about success in STEM (Cheryan et al., 2011). Encourag-
ing the wide adoption of these simple counterstereotypical sig-
nals among both male and female faculty may therefore be an
actionable step to help foster women’s own success beliefs in
STEM.

Changing organization-level gender bias
STEM environments exhibit biases that have consequences for
women’s safety, performance, and perceived belonging (see sec-
tion on “Explicit and implicit bias” above). While much of this
hostile climate comes from the accumulation of individual biases,
a climate is also grounded in structural features, ranging from the
possibility of flexible work arrangements (Fuller and Hirsh,
2018), to the presence of stereotype-reinforcing decorations in
physical spaces (Cheryan et al., 2009). Allowing flexible work
arrangements in STEM can have beneficial effects on the treat-
ment and advancement of women (particularly mothers) be-
cause the arrangements both endorse and facilitate communal
and family values. Although there are stigmas surrounding flex-
ible work arrangements (e.g., Cech and Blair-Loy, 2014), the ben-
efits appear to outweigh these costs: indeed, flexible work can
reduce the wage gap for mothers by reducing within-
organization disparities and allowing mothers to enter high-wage
establishments (Fuller and Hirsh, 2018). Given that female junior
faculty with children and working partners spend 20 h more per
week on household and childcare duties than their male counter-
parts (Harvard University Office of the Senior Vice Provost,
2014), focusing on reducing or supporting women’s household
and childcare duties may be crucial to ensuring equal advance-
ment in STEM.

Large-scale organizational change, such as implementing flex-
ible work policies, can often be slow. These changes can therefore
be supplemented by more immediate interventions to improve
the ongoing experiences of women in STEM. For instance, as
discussed in the section on “Differences in preferences, values, or
lifestyle choices,” improvements in both men and women’s be-
longing in STEM can be achieved by removing cues of masculine
stereotypes in classrooms (e.g., Star Trek posters) (Cheryan et al.,
2009).

Similarly, increasing the perception that STEM environments
can satisfy group-serving values, such as by emphasizing the daily
tasks of scientists that involve mentorship or helping, leads fe-
male college students to report more interest and investment in
STEM careers (Diekman et al., 2011). Changing such subtle lin-
guistic cues can also have positive outcomes on self-reported
STEM interest for children as early as elementary and middle
school (Weisgram and Bigler, 2006; Tyler-Wood et al., 2012; Col-
vin et al., 2013; Rhodes et al., 2019). It is these types of changes
(e.g., emphasizing the opportunities of group-serving values)
that are anecdotally described to lead to milestone achievements,
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such as the recent success of women composing an impressive
48% of Carnegie Mellon’s incoming 2016 computer science class
(Spice, 2016). While we may take for granted how we describe
and decorate STEM environments, reducing the subtle stereo-
typicality in environments can improve women’s self-reported
feelings of belonging and interest in STEM. As such, critically
evaluating and, if necessary, changing our own organizations and
workplaces (including job postings or office decorations) may be
a small but effective action to promote gender equity.

The emerging trends in interventions to reduce individual and
organizational gender biases are promising. However, additional
research is needed: (1) using both laboratory-based experiments
and randomized-control-trial designs in the field; (2) assessing
implicit and explicit stereotypes as both outcomes and mediators
of behavior change; (3) looking at differences across STEM sub-
fields; and (4) addressing intersectional biases toward minorities
and mothers. Additionally, research that identifies the overarch-
ing characteristics of successful interventions is crucial (Paluck
and Green, 2009; Dobbin and Kalev, 2013; Moss-Racusin et al.,
2014). At present, it appears that, regardless of the target (indi-
vidual or organizational), interventions are more effective when
they (1) are grounded in theory and evidence, (2) involve active
learning and responsibility rather than lecturing or forced train-
ing, (3) avoid assigning personal blame or guilt, and (4) include
evaluation plans of intervention efficacy (Kang and Kaplan,
2019).

In conclusion, the mental makeup of men and women is more
similar than different (Hyde, 2005, 2014). Despite these similar-
ities, the outcomes and experiences of men and women in STEM
continue to exhibit differences. Gender gaps in STEM are evident
in representation (particularly in high-status positions and in
subfields of computer sciences and engineering), compensation,
and, to a lesser extent, grants, publications, and awards. The
weight of the evidence no longer supports that these gaps are the
result of innate ability differences. Instead, gender gaps in STEM
appear, in part, to arise from differences in perceived values and
opportunities in environments, as well as pervasive implicit and
explicit biases that shape the perceptions of these values and en-
vironments. While initial evidence to address disparities is prom-
ising, much remains to be understood about the most effective
interventions to reduce individual and organizational gender bi-
ases. The pursuit of understanding and addressing the causes of
gender disparities in STEM is crucial to bring our often-biased be-
haviors and decisions in line with our values of equality and fairness
(Charlesworth and Banaji, 2019b). Yet perhaps more importantly,
ensuring the full participation of the highest-quality candidates (in-
cluding women) guarantees improvement in the productivity and
innovation of STEM discoveries, technologies, and applications that,
ultimately, will improve societies.
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